Research Article

Network Traffic Classification Based on SD Sampling and Hierarchical Ensemble Learning

Table 12

Classification performance of the sampled dataset with the SD sampling algorithm.

PrecisionRecallF1 scoreFNRFPR

SD sampling layer1
Benign0.99960.99720.99840.00040.0028
Abnormal0.99720.99960.99840.00280.0004

Accuracy0.9984
Macro avg0.99840.99840.99840.00160.0016
Weighted avg0.99840.99840.99840.00160.0016

SD sampling layer2
Benign0.99960.99720.99840.00040.0028
DoS hulk0.98110.99880.98990.01890.0012
DDoS1.00001.00001.00000.00000.0000
PortScan1.00000.99960.99980.00000.0004
DoS goldeneye0.99800.99880.99840.00200.0012
FTP-patator1.00001.00001.00000.00000.0000
DoS slowloris0.99550.99110.99330.00450.0089
DoS slowhttptest0.99620.99080.99350.00380.0092
SSH-patator1.00001.00001.00000.00000.0000
Bot1.00000.99590.99790.00000.0041
Infiltration1.00001.00001.00000.00000.0000
Heartbleed1.00001.00001.00000.00000.0000
Web attack0.98530.99810.99170.01470.0019

Accuracy0.9975
Macro avg0.99660.99770.99710.00340.0023
Weighted avg0.99760.99750.99750.00240.0025