Research Article
Network Traffic Classification Based on SD Sampling and Hierarchical Ensemble Learning
Table 12
Classification performance of the sampled dataset with the SD sampling algorithm.
| | Precision | Recall | F1 score | FNR | FPR |
| SD sampling layer1 | Benign | 0.9996 | 0.9972 | 0.9984 | 0.0004 | 0.0028 | Abnormal | 0.9972 | 0.9996 | 0.9984 | 0.0028 | 0.0004 |
| Accuracy | | | | | 0.9984 | Macro avg | 0.9984 | 0.9984 | 0.9984 | 0.0016 | 0.0016 | Weighted avg | 0.9984 | 0.9984 | 0.9984 | 0.0016 | 0.0016 |
| SD sampling layer2 | Benign | 0.9996 | 0.9972 | 0.9984 | 0.0004 | 0.0028 | DoS hulk | 0.9811 | 0.9988 | 0.9899 | 0.0189 | 0.0012 | DDoS | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | PortScan | 1.0000 | 0.9996 | 0.9998 | 0.0000 | 0.0004 | DoS goldeneye | 0.9980 | 0.9988 | 0.9984 | 0.0020 | 0.0012 | FTP-patator | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | DoS slowloris | 0.9955 | 0.9911 | 0.9933 | 0.0045 | 0.0089 | DoS slowhttptest | 0.9962 | 0.9908 | 0.9935 | 0.0038 | 0.0092 | SSH-patator | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | Bot | 1.0000 | 0.9959 | 0.9979 | 0.0000 | 0.0041 | Infiltration | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | Heartbleed | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | Web attack | 0.9853 | 0.9981 | 0.9917 | 0.0147 | 0.0019 |
| Accuracy | | | | | 0.9975 | Macro avg | 0.9966 | 0.9977 | 0.9971 | 0.0034 | 0.0023 | Weighted avg | 0.9976 | 0.9975 | 0.9975 | 0.0024 | 0.0025 |
|
|