Research Article

Network Traffic Classification Based on SD Sampling and Hierarchical Ensemble Learning

Table 8

Model parameters of the two-layer structure.

ModelParameters
OriginalSMOTERandom samplingSD sampling

XGBoostn_estimators’: 90“n_estimators”: 80“n_estimators”: 80“n_estimators”: 80
max_depth’: 8“max_depth”: 8“max_depth”: 8“max_depth”: 8
learning rate’: 0.15“learning_rate”: 0.2“learning_rate”: 0.2“learning_rate”: 0.2
gamma’: 0.01“gamma”: 0.001“gamma”: 0.001“gamma”: 0.001

RF“n_estimators”: 20“n_estimators”: 60“n_estimators”: 60“n_estimators”: 20
“min_samples_leaf”: 1“min_samples_leaf”: 1“min_samples_leaf”: 1“min_samples_leaf”: 1
“max_features”: none“max_features”: “log2”“max_features”: “log2”“max_features”: none