Research Article
Network Traffic Classification Based on SD Sampling and Hierarchical Ensemble Learning
Table 9
Classification performance of original datasets.
| | Precision | Recall | F1 score | FNR | FPR |
| Original layer 1 | Benign | 0.9992 | 0.9980 | 0.9986 | 0.0008 | 0.0020 | Abnormal | 0.9980 | 0.9992 | 0.9986 | 0.0020 | 0.0008 |
| Accuracy | | | | | 0.9986 | Macro avg | 0.9986 | 0.9986 | 0.9986 | 0.0014 | 0.0014 | Weighted avg | 0.9986 | 0.9986 | 0.9986 | 0.0014 | 0.0014 |
| Original layer2 | Benign | 0.9992 | 0.9980 | 0.9986 | 0.0008 | 0.0020 | DoS hulk | 0.9846 | 0.9988 | 0.9917 | 0.0154 | 0.0012 | DDoS | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | PortScan | 0.9996 | 0.9996 | 0.9996 | 0.0004 | 0.0004 | DoS goldeneye | 1.0000 | 0.9988 | 0.9994 | 0.0000 | 0.0012 | FTP-patator | 0.9993 | 1.0000 | 0.9997 | 0.0007 | 0.0000 | DoS slowloris | 0.9948 | 0.9941 | 0.9944 | 0.0052 | 0.0059 | DoS slowhttptest | 0.9969 | 0.9969 | 0.9969 | 0.0031 | 0.0031 | SSH-patator | 1.0000 | 0.9988 | 0.9994 | 0.0000 | 0.0012 | Bot | 0.9979 | 0.9918 | 0.9949 | 0.0021 | 0.0082 | Infiltration | 1.0000 | 0.5556 | 0.7143 | 0.0000 | 0.4444 | Heartbleed | 1.0000 | 0.6667 | 0.8000 | 0.0000 | 0.3333 | Web attack | 0.9906 | 0.9813 | 0.9859 | 0.0094 | 0.0187 |
| Accuracy | | | | | 0.9978 | Macro avg | 0.9972 | 0.9369 | 0.9596 | 0.0028 | 0.0631 | Weighted avg | 0.9978 | 0.9978 | 0.9978 | 0.0022 | 0.0022 |
|
|