Research Article

Network Traffic Classification Based on SD Sampling and Hierarchical Ensemble Learning

Table 9

Classification performance of original datasets.

PrecisionRecallF1 scoreFNRFPR

Original layer 1
Benign0.99920.99800.99860.00080.0020
Abnormal0.99800.99920.99860.00200.0008

Accuracy0.9986
Macro avg0.99860.99860.99860.00140.0014
Weighted avg0.99860.99860.99860.00140.0014

Original layer2
Benign0.99920.99800.99860.00080.0020
DoS hulk0.98460.99880.99170.01540.0012
DDoS1.00001.00001.00000.00000.0000
PortScan0.99960.99960.99960.00040.0004
DoS goldeneye1.00000.99880.99940.00000.0012
FTP-patator0.99931.00000.99970.00070.0000
DoS slowloris0.99480.99410.99440.00520.0059
DoS slowhttptest0.99690.99690.99690.00310.0031
SSH-patator1.00000.99880.99940.00000.0012
Bot0.99790.99180.99490.00210.0082
Infiltration1.00000.55560.71430.00000.4444
Heartbleed1.00000.66670.80000.00000.3333
Web attack0.99060.98130.98590.00940.0187

Accuracy0.9978
Macro avg0.99720.93690.95960.00280.0631
Weighted avg0.99780.99780.99780.00220.0022