Research Article
Lightweight Intrusion Detection Model of the Internet of Things with Hybrid Cloud-Fog Computing
Table 6
Experimental results of ConvNeXt, ConvNeXt-DenseNet, ConvNeXt-GhostNet, and the proposed model on ToN-IoT and BoT-IoT datasets.
| Dataset | Model | Accuracy | Precision | Recall | F1-score | FAR | AUC |
| TON-IoT | ConvNeXt | 0.9996 | 0.9997 | 0.9980 | 0.9989 | 0.0001 | 0.9998 | ConvNeXt-DenseNet | 0.9996 | 0.9995 | 0.9984 | 0.9990 | 0.0001 | 0.9997 | ConvNeXt-GhostNet | 0.9998 | 0.9996 | 0.9988 | 0.9992 | 0.0000 | 1.0000 | Proposed model | 0.9998 | 0.9997 | 0.9987 | 0.9992 | 0.0000 | 0.9989 |
| BoT-IoT | ConvNeXt | 1.0000 | 0.9960 | 0.9923 | 0.9941 | 0.0000 | 1.0000 | ConvNeXt-DenseNet | 1.0000 | 0.9961 | 0.9961 | 0.9961 | 0.0000 | 1.0000 | ConvNeXt-GhostNet | 1.0000 | 1.0000 | 0.9739 | 0.9863 | 0.0000 | 0.9999 | Proposed model | 1.0000 | 0.9962 | 1.0000 | 0.9981 | 0.0000 | 1.0000 |
|
|
The bold value in the table means that the corresponding model is optimal on this performance metric.
|