Research Article
Lightweight Intrusion Detection Model of the Internet of Things with Hybrid Cloud-Fog Computing
Table 8
Experimental results of TON-IoT in various types.
| Model | Metrics | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| TP2SF [17] | Precision | 0.9600 | 0.9200 | 1.0000 | 0.9200 | 1.0000 | 0.9800 | 1.0000 | 0.9800 | 0.9900 | 0.9500 | Recall | 1.0000 | 0.9200 | 0.9900 | 0.9100 | 0.8000 | 1.0000 | 0.9700 | 0.9900 | 0.9100 | 0.7500 | F1-score | 0.9800 | 0.9200 | 0.9900 | 0.9200 | 0.8900 | 0.9900 | 0.9800 | 0.9800 | 0.9500 | 0.8400 |
| Sp2f [18] | Precision | 0.9991 | 0.9875 | 0.9976 | 0.9445 | 1.0000 | 1.0000 | 0.9983 | 0.9978 | 1.0000 | 0.9954 | Recall | 0.9988 | 0.9429 | 0.9979 | 0.9870 | 0.9675 | 1.0000 | 0.9957 | 1.0000 | 1.0000 | 0.9970 | F1-score | 0.9989 | 0.9647 | 0.9978 | 0.9653 | 0.9834 | 1.0000 | 0.9970 | 0.9989 | 1.0000 | 0.9970 |
| ConvNeXt | Accuracy | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9999 | 0.9998 | 1.0000 | 1.0000 | Precision | 1.0000 | 0.9994 | 1.0000 | 1.0000 | 1.0000 | 0.9995 | 0.9989 | 0.9994 | 1.0000 | 1.0000 | Recall | 1.0000 | 0.9994 | 1.0000 | 0.9989 | 0.9890 | 1.0000 | 0.9989 | 0.9948 | 1.0000 | 0.9994 | F1-score | 1.0000 | 0.9994 | 1.0000 | 0.9994 | 0.9945 | 0.9997 | 0.9989 | 0.9971 | 1.0000 | 0.9997 | FAR | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0009 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
| Proposed model | Accuracy | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 1.0000 | 0.9998 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | Precision | 1.0000 | 1.0000 | 1.0000 | 0.9994 | 1.0000 | 0.9999 | 0.9989 | 0.9994 | 0.9994 | 1.0000 | Recall | 1.0000 | 0.9994 | 1.0000 | 0.9989 | 0.9890 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | F1-score | 1.0000 | 0.9997 | 1.0000 | 0.9991 | 0.9945 | 0.9999 | 0.9994 | 0.9997 | 0.9997 | 1.0000 | FAR | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
|
|
The bold value in the table means that the corresponding model is optimal on this performance metric.
|