Research Article

Lightweight Intrusion Detection Model of the Internet of Things with Hybrid Cloud-Fog Computing

Table 8

Experimental results of TON-IoT in various types.

ModelMetrics0123456789

TP2SF [17]Precision0.96000.92001.00000.92001.00000.98001.00000.98000.99000.9500
Recall1.00000.92000.99000.91000.80001.00000.97000.99000.91000.7500
F1-score0.98000.92000.99000.92000.89000.99000.98000.98000.95000.8400

Sp2f [18]Precision0.99910.98750.99760.94451.00001.00000.99830.99781.00000.9954
Recall0.99880.94290.99790.98700.96751.00000.99571.00001.00000.9970
F1-score0.99890.96470.99780.96530.98341.00000.99700.99891.00000.9970

ConvNeXtAccuracy1.00001.00001.00001.00001.00000.99970.99990.99981.00001.0000
Precision1.00000.99941.00001.00001.00000.99950.99890.99941.00001.0000
Recall1.00000.99941.00000.99890.98901.00000.99890.99481.00000.9994
F1-score1.00000.99941.00000.99940.99450.99970.99890.99711.00000.9997
FAR0.00000.00000.00000.00000.00000.00090.00010.00000.00000.0000

Proposed modelAccuracy1.00001.00001.00000.99991.00000.99981.00001.00001.00001.0000
Precision1.00001.00001.00000.99941.00000.99990.99890.99940.99941.0000
Recall1.00000.99941.00000.99890.98900.99991.00001.00001.00001.0000
F1-score1.00000.99971.00000.99910.99450.99990.99940.99970.99971.0000
FAR0.00000.00000.00000.00000.00000.00020.00010.00000.00000.0000

The bold value in the table means that the corresponding model is optimal on this performance metric.