Research Article
Fingerspelling Identification for Chinese Sign Language via AlexNet-Based Transfer Learning and Adam Optimizer
Table 1
Learnable layers of AlexNet.
| Name | Weights | Biases |
| CL1 | 11 ∗ 11 ∗ 3 ∗ 96 = 34,848 | 1 ∗ 1 ∗ 96 = 96 | CL2 | 5 ∗ 5 ∗ 48 ∗ 256 = 307,200 | 1 ∗ 1 ∗ 256 = 256 | CL3 | 3 ∗ 3 ∗ 256 ∗ 384 = 884,736 | 1 ∗ 1 ∗ 384 = 384 | CL4 | 3 ∗ 3 ∗ 192 ∗ 384 = 663,552 | 1 ∗ 1 ∗ 384 = 384 | CL5 | 3 ∗ 3 ∗ 192 ∗ 256 = 442,368 | 1 ∗ 1 ∗ 256 = 256 | FCL6 | 4096 ∗ 9216 = 37,748,736 | 4096 ∗ 1 = 4,096 | FCL7 | 4096 ∗ 4096 = 16,777,216 | 4096 ∗ 1 = 4,096 | FCL8 | 1000 ∗ 4096 = 4,096,000 | 1000 ∗ 1 = 1,000 | Total | 60,954,656 | 10,568 |
|
|