Research Article
Automatic Synthesis Technology of Music Teaching Melodies Based on Recurrent Neural Network
Table 4
Prediction errors of acoustic features of different model configurations on the test set.
| Model | Number of layers | F0 correlation | F0 RMSE | LE | LCD |
| DCNN | 1 | 0.73 | 41.39 | 3.95 | 6.25 | 2 | 0.85 | 40.72 | 2.67 | 5.12 | 3 | 0.89 | 38.85 | 2.53 | 4.87 | 4 | 0.84 | 39.03 | 2.51 | 4.82 | 5 | 0.82 | 39.73 | 2.54 | 4.83 |
| LSTM | 1 | 0.86 | 39.46 | 3.76 | 5.14 | 2 | 0.85 | 37.12 | 2.64 | 4.69 | 3 | 0.84 | 36.80 | 2.68 | 4.23 | 4 | 0.89 | 36.71 | 2.63 | 4.52 | 5 | 0.88 | 38.62 | 3.85 | 4.34 |
| Our model | 1 | 0.86 | 38.94 | 2.67 | 5.09 | 2 | 0.85 | 35.23 | 2.59 | 4.72 | 3 | 0.89 | 35.89 | 2.52 | 4.24 | 4 | 0.88 | 35.42 | 2.63 | 4.12 | 5 | 0.87 | 35.73 | 2.51 | 4.35 |
|
|