Research Article
Detection of Online Fake News Using Blending Ensemble Learning
Table 1
Performance metrics for the Liar dataset.
| ā | Liar dataset using n-gram | ROC AUC | f1-score | AUC | Precision | Recall | Accuracy % |
| Logistic regression (LR) classifier | 0.634 | 0.673 | 0.666 | 0.616 | 0.742 | 60.346 | Linear discriminant analysis (LDA) classifier | 0.553 | 0.573 | 0.596 | 0.589 | 0.558 | 54.269 | Stochastic gradient descent classifier (SGDC) | 0.616 | 0.682 | 0.648 | 0.592 | 0.805 | 58.725 | Ridge classifier (RC) | 0.598 | 0.685 | 0.626 | 0.580 | 0.836 | 57.682 | Linear support vector machine (SVM) classifier | 0.609 | 0.682 | 0.642 | 0.589 | 0.810 | 58.523 | Blending (BLD) ensemble | 0.634 | 0.682 | 0.668 | 0.616 | 0.765 | 60.813 |
|
|