Research Article
A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology
| (1) | Procedure GCDK2{ | | (2) | {Input: K2 algorithm need parameter initialisation, mutation rate pm = 0.5} | | (3) | {Output: a bayesian network and a matrix contain optimal value and location } | | (4) | For = 1-n{ | | (5) | | | (6) | While and | | (7) | {Potential parents} | | (8) | | | (9) | For -{ | | (10) | | | (11) | End for} | | (12) | {is a location, is the max first score} | | (13) | Get and | | (14) | Get and | | (15) | Get and | | (16) | Mutate optimal values get a new genetic value | | (17) | If () {; | | (18) | Input , , | | (19) | , and into candidate matrix | | (20) | End if} | | (21) | End while} | | (22) | End for} | | (23) | End GCDK2} |
|