Research Article

Premature Ventricular Contractions’ Detection Based on Active Learning

Table 3

Overall algorithm flow of PVC detection.

Algorithm ALPVCsD

Input: Unlabeled data set Z = (xi, yi), i = 1, …, N,
   Number of initial selected samples: K,
   Number of samples selected during iteration: i.
Output: Labeled data set L = (aj, bj), j = 1, …, M (0 < M < N),
   Trained classifier model: random forest
Initialize: centroids = [one random selected points]
   Z_len ⟵ length (Z)
   L_len ⟵ length (L)
   Feature extraction from data by self convolution encoder
For j from 1 to K1
  Distance ⟵ { }
  For t from 1 to length (centroids)
   compute distance of “point” in Z to centroids and store the point P with minimum distance
  End centroids = centroids +P
End
L ⟵ L centroids (annotated the K data by Oracal)
Z ⟵ Z\centroids
Z_len ⟵ Z_len K
L_len ⟵ L_len +K
Repeat:
  Training random forest with centroids.
  If the number of unlabeled data <1/2 N:
   Break
For t in Z
   calculate the minimum confidence using equation (3) and store it in Q
  End
  P_data ⟵ Sort Q and select the smallest 50 data
  L ⟵ LP_data
  Z ⟵ Z\ P_data train random forest use the 50 labeled data
  Z_len ⟵ Z_len 50
  L_len ⟵ L_len +50
End