Research Article
Impact of Parameter Tuning for Optimizing Deep Neural Network Models for Predicting Software Faults
Table 2
Comparative results for the KC1 dataset.
  |  | KC1 |  | Algorithm | Precision | Recall | F-measure | Accuracy |  
  |  | RF | 0.887 | 0.965 | 0.925 | 86.670 |  | DT | 0.865 | 0.974 | 0.916 | 84.870 |  | NB | 0.888 | 0.905 | 0.897 | 82.360 |  | Without dropout DNN | 0.790 | 0.970 | 0.940 | 88.570 |  | With dropout DNN | 0.850 | 1.000 | 0.920 | 92.000 |  
  |  
  |