Research Article
Impact of Parameter Tuning for Optimizing Deep Neural Network Models for Predicting Software Faults
Table 2
Comparative results for the KC1 dataset.
| | KC1 | | Algorithm | Precision | Recall | F-measure | Accuracy |
| | RF | 0.887 | 0.965 | 0.925 | 86.670 | | DT | 0.865 | 0.974 | 0.916 | 84.870 | | NB | 0.888 | 0.905 | 0.897 | 82.360 | | Without dropout DNN | 0.790 | 0.970 | 0.940 | 88.570 | | With dropout DNN | 0.850 | 1.000 | 0.920 | 92.000 |
|
|