Research Article
Sensors Anomaly Detection of Industrial Internet of Things Based on Isolated Forest Algorithm and Data Compression
Algorithm 1
Sensor data compression algorithm.
| | Input: data.txt sensor data T number of packets processed in a single group K, error threshold E. | | Output: out1.txt, out2.txt. | | (1) | for i = 1 to N | | (2) | read the data from “test.txt”, and write them to “data.txt” | | (3) | if e of the “test.txt” | | (4) | break | | (5) | end if | | (6) | for i = 1 to N | | (7) | read the data from “data.txt” to T[i + 1] | | (8) | aver = sum(T)/i + 1; | | (9) | end | | (10) | if (aver < 0) | | (11) | for i = 1 to k | | (12) | aver < aver + T[i] | | (13) | aver < aver/k | | (14) | end | | (15) | else | | (16) | for i = 2 to n | | (17) | temp < aver | | (18) | for j = 0 to k − 1 | | (19) | if i + j ≥= n | | (20) | temp < −1 | | (21) | aver < aver + T[i + j] | | (22) | end if | | (23) | end | | (24) | end if | | (25) | end | | (26) | end if | | (27) | aver < aver/k | | (28) | if |aver-temp| >= e | | (29) | put i + j −1 to “out1.txt” | | (30) | put T[i + j −1] to “out2.txt” | | (31) | end if | | (32) | return “out1.txt”,“out2.txt” |
|