Research Article

Quantitative Analysis and Prediction of Global Terrorist Attacks Based on Machine Learning

Table 5

Comparison of 10-fold cross-validation and hold-out methods (terror attack frequency ≥ 500).

MetricsData split verification method
Hold-out method10-fold cross-validation method
MeanMaxMin

AccuracyDecision trees0.9586470.9560260.9643870.949943
Bagging0.9319890.9335280.9367640.927569
Random forests0.9682160.9659740.9687440.962647
ExtraTrees0.9595010.9594060.9624000.956011
XGBoost0.9716340.9677780.9708280.963216

PrecisionDecision trees0.9282420.9290960.9436240.918073
Bagging0.9321520.9272420.9381000.911614
Random forests0.9577270.9555940.9637530.947774
ExtraTrees0.9421590.9415080.9457370.935197
XGBoost0.9572460.9528170.9568000.943972

RecallDecision trees0.9295540.9318220.9440810.923149
Bagging0.8581060.8625040.8712330.854989
Random forests0.9341400.9349520.9414220.929029
ExtraTrees0.9262340.9289440.9347920.923533
XGBoost0.9449040.9422870.9504760.933696

F1 scoreDecision trees0.9286030.9300630.9437020.920590
Bagging0.8751510.8759030.8862390.866793
Random forests0.9428830.9426580.9493660.935658
ExtraTrees0.9327980.9336080.9373900.927087
XGBoost0.9500110.9465420.9531230.937474