Research Article
Quantitative Analysis and Prediction of Global Terrorist Attacks Based on Machine Learning
Table 5
Comparison of 10-fold cross-validation and hold-out methods (terror attack frequency ≥ 500).
| Metrics | Data split verification method | Hold-out method | 10-fold cross-validation method | Mean | Max | Min |
| Accuracy | Decision trees | 0.958647 | 0.956026 | 0.964387 | 0.949943 | Bagging | 0.931989 | 0.933528 | 0.936764 | 0.927569 | Random forests | 0.968216 | 0.965974 | 0.968744 | 0.962647 | ExtraTrees | 0.959501 | 0.959406 | 0.962400 | 0.956011 | XGBoost | 0.971634 | 0.967778 | 0.970828 | 0.963216 |
| Precision | Decision trees | 0.928242 | 0.929096 | 0.943624 | 0.918073 | Bagging | 0.932152 | 0.927242 | 0.938100 | 0.911614 | Random forests | 0.957727 | 0.955594 | 0.963753 | 0.947774 | ExtraTrees | 0.942159 | 0.941508 | 0.945737 | 0.935197 | XGBoost | 0.957246 | 0.952817 | 0.956800 | 0.943972 |
| Recall | Decision trees | 0.929554 | 0.931822 | 0.944081 | 0.923149 | Bagging | 0.858106 | 0.862504 | 0.871233 | 0.854989 | Random forests | 0.934140 | 0.934952 | 0.941422 | 0.929029 | ExtraTrees | 0.926234 | 0.928944 | 0.934792 | 0.923533 | XGBoost | 0.944904 | 0.942287 | 0.950476 | 0.933696 |
| F1 score | Decision trees | 0.928603 | 0.930063 | 0.943702 | 0.920590 | Bagging | 0.875151 | 0.875903 | 0.886239 | 0.866793 | Random forests | 0.942883 | 0.942658 | 0.949366 | 0.935658 | ExtraTrees | 0.932798 | 0.933608 | 0.937390 | 0.927087 | XGBoost | 0.950011 | 0.946542 | 0.953123 | 0.937474 |
|
|