Research Article
Vehicle Reidentification Based on MAPANet and k-Reciprocal Encoding
Table 3
The Rank-1 and Rank-5 comparison on the VehicleID dataset.
| Method | Small (800) | Medium (1600) | Large (2400) | R1 (%) | R5 (%) | R1 (%) | R5 (%) | R1 (%) | R5 (%) |
| GoogLeNet [32] | 47.88 | 67.18 | 43.40 | 63.86 | 38.27 | 59.39 | FACT [10] | 49.53 | 68.07 | 44.59 | 64.57 | 39.92 | 60.32 | XVGAN [41] | 52.79 | 80.69 | 49.47 | 71.42 | 44.92 | 66.71 | VRSDNet [37] | 56.98 | 86.90 | 50.57 | 80.05 | 42.92 | 73.44 | VAMI [13] | 63.12 | 83.25 | 52.87 | 75.12 | 47.34 | 70.29 | DLCNN [42] | 73.01 | 82.70 | 66.50 | 77.06 | 61.00 | 73.17 | EALN [40] | 75.11 | — | 78.69 | — | 69.30 | — | GS-TRE [43] | 75.90 | 84.20 | 74.80 | 83.60 | 72.30 | 82.70 | DFN [26] | 77.02 | 85.04 | 71.81 | 80.81 | 66.29 | 78.42 | Ours | 78.15 | 89.92 | 74.21 | 84.86 | 72.31 | 84.15 |
|
|