Research Article

CBO-IE: A Data Mining Approach for Healthcare IoT Dataset Using Chaotic Biogeography-Based Optimization and Information Entropy

Algorithm 1

Biogeography-Based Optimization.
START
 Initialize the parameters G = M = 1, Tmaximum = 1, PS and Max_iteration
 Initialize the populations (arbitrary group of habitats) H1, H2,.........,
 Evaluate fitness value (HSI) for every habitat
WHILE (ending condition is not found)
  Evaluate αa, βa and Ta for every habitat
  Obtain a //Migration
  FOR every habitat (from minimum to maximum HSI values)
   Choose habitat Ha (SIV) stochastically proportional to βa
   IF random < βa and Ha (SIV) choose, then
    Choose habitat Hb (SIV) stochastically proportional to αa
    IF random < αa and Hb (SIV) choose, then
     Ha (SIV) = Hb (SIV)
    END IF
   END IF
  END FOR//MUTATION
  Choose Ha (SIV) with the help of mutation possibility proportional Sa
  IF random < Ta then
   Arbitrary change the SIVs in Ha (SIV)
  END IF
  Evaluate HSI value
END WHILE
STOP