Research Article
CBO-IE: A Data Mining Approach for Healthcare IoT Dataset Using Chaotic Biogeography-Based Optimization and Information Entropy
Algorithm 1
Biogeography-Based Optimization.
| START | Initialize the parameters G = M = 1, Tmaximum = 1, PS and Max_iteration | Initialize the populations (arbitrary group of habitats) H1, H2,........., | Evaluate fitness value (HSI) for every habitat | WHILE (ending condition is not found) | Evaluate αa, βa and Ta for every habitat | Obtain a //Migration | FOR every habitat (from minimum to maximum HSI values) | Choose habitat Ha (SIV) stochastically proportional to βa | IF random < βa and Ha (SIV) choose, then | Choose habitat Hb (SIV) stochastically proportional to αa | IF random < αa and Hb (SIV) choose, then | Ha (SIV) = Hb (SIV) | END IF | END IF | END FOR//MUTATION | Choose Ha (SIV) with the help of mutation possibility proportional Sa | IF random < Ta then | Arbitrary change the SIVs in Ha (SIV) | END IF | Evaluate HSI value | END WHILE | STOP |
|