Research Article
PERLEX: A Bilingual Persian-English Gold Dataset for Relation Extraction
Table 8
F1-scores for the nine classes of PERLEX for all six models.
| Class | Baseline (%) | CNN (%) | Att-BLSTM (%) | BLSTM-LET (%) | R-BERT (%) | BERTEM-MTB (%) |
| Cause-Effect | 77.41 | 80.53 | 82.13 | 81.06 | 83.51 | 86.07 | Component-Whole | 53.22 | 62.56 | 63.59 | 63.74 | 66.87 | 67.09 | Content-Container | 70.31 | 75.84 | 73.82 | 75.90 | 77.24 | 78.53 | Entity-Destination | 73.53 | 75.82 | 79.24 | 81.05 | 84.77 | 86.00 | Entity-Origin | 60.95 | 66.80 | 66.80 | 66.92 | 74.95 | 76.08 | Instrument-Agency | 64.81 | 57.78 | 54.72 | 59.56 | 62.25 | 69.51 | Member-Collection | 58.66 | 70.25 | 67.56 | 69.55 | 75.17 | 76.00 | Message-Topic | 59.07 | 71.94 | 74.90 | 75.33 | 81.34 | 85.19 | Product-Producer | 53.07 | 61.99 | 63.74 | 64.02 | 71.67 | 74.46 |
|
|