Research Article
Prediction of Soil Heavy Metal Content Based on Deep Reinforcement Learning
Table 2
Prediction error of different models on different data sets
| ā | Models | Training | Validation | MSE | MAE | RMSE | MAPE (%) | MSE | MAE | RMSE | MAPE (%) |
| Cd | SA1DW | 138.67 | 8.46 | 11.77 | 63.68 | 203.55 | 10.11 | 14.27 | 84.96 | IDW | 174.07 | 10.22 | 13.19 | 7634 | 225.69 | 10.84 | 15.02 | 89.67 | RFR | 57.54 | 4.55 | 7.58 | 31.27 | 217.05 | 11.91 | 14.76 | 101.04 |
| Cr | SAIDW | 97.41 | 7.11 | 9.87 | 28.19 | 144.41 | 8.20 | 12.02 | 35.25 | IDW | 119.63 | 8.40 | 10.93 | 33.22 | 158.79 | 8.49 | 12.60 | 36.46 | RFR | 48.17 | 3.89 | 6.94 | 15.24 | 168.83 | 8.91 | 12.99 | 38.12 |
| Ni | SAIDW | 53.57 | 5.17 | 731 | 27.41 | 69.52 | 5S2 | 8.34 | 27.48 | IDW | 76.06 | 6.59 | 8.72 | 33.60 | 73.63 | 5.77 | 8.58 | 28.04 | RFR | 31.61 | 3.04 | 5.62 | 14.40 | 76.71 | 6.23 | 8.76 | 32.12 |
| Pb | SAIDW | 1037.) 1 | 18.91 | 18.91 | 27.89 | 690.88 | 20.63 | 26.28 | 34.03 | IDW | 1279.24 | 22.52 | 35.76 | 33.87 | 712.62 | 21.02 | 26.69 | 34.44 | RFR | 456.46 | 10.34 | 2136 | 14.89 | 886.51 | 22.03 | 29.77 | 39.06 |
|
|