Research Article
Semantic Understandings for Aerial Images via Multigrained Feature Grouping
Table 3
Performance comparison with state-of-the-art methods on the DFC15 multilabel dataset (%).
| Model | EP | ER | EF1 | EF2 | LP | LR | LF1 | LF2 |
| ReNet-50 [40] | 84.89 | 75.64 | 80 | 77.33 | 81.5 | 59.99 | 69.11 | 63.33 | ResNet-RBFNN [41] | 82.64 | 78.76 | 80.65 | 79.51 | 72.01 | 69.85 | 70.91 | 70.27 | CA-ResNet-LSTM [15] | 85.66 | 75.84 | 80.45 | 77.62 | 83.83 | 60.05 | 69.97 | 63.66 | CA-ResNet-BiLSTM [15] | 91.93 | 79.12 | 85.05 | 81.39 | 94.35 | 62.35 | 75.08 | 66.89 | ML_GCN [34] | 93.52 | 93.76 | 93.64 | 93.71 | 91.15 | 90.02 | 90.58 | 90.24 | MSGM | 94.61 | 92.71 | 93.65 | 93.08 | 91.42 | 90.70 | 91.06 | 90.84 |
|
|