Research Article

A Robust Convolutional Neural Network for 6D Object Pose Estimation from RGB Image with Distance Regularization Voting Loss

Table 1

The performance on the LINEMOD dataset for objects pose estimation based on ADD (-S) scores.

MethodsApeBench viseCamCanCatDrillerDuckEgg boxGlueHole puncherIronLampPhoneMean

BB8 [29]40.4091.8055.7064.1062.6074.7044.3057.8041.2067.2084.7076.5054.0062.70
SSD6D [1]65.0080.0078.0086.0070.0073.0066.0010010049.0078.0073.0079.0079.00
YOLO6D [3]21.6281.8036.5768.8041.8263.5127.2369.5880.0242.6374.9771.1147.7455.95
DPOD [31]53.2895.3490.3694.1060.3897.7266.0199.7293.8365.8399.8088.1174.2482.98
Pix2Pose [33]58.1091.0060.9084.4065.0073.6043.8096.8079.4074.8083.4082.0045.0072.40
CDPN [32]64.3897.7791.6795.8783.8396.2366.7699.7299.6185.8297.8597.8690.7589.86
PoseCNN [5]27.8068.9047.5071.4056.7065.4042.8098.3095.6050.9065.6070.3054.6062.70
PVNet [8]43.6299.9086.8695.4779.3496.4352.5899.1595.6681.9298.8899.3392.4186.27
DPVL [11]69.0510094.1298.5283.1399.0163.4710097.9788.2099.9099.8196.3591.50
PDAL + AFAM [12]69.4310092.4599.2187.7299.0167.7910098.9486.0199.3899.8195.1091.91
L+ [7]65.3410092.6597.8490.2297.7262.5499.7295.5688.9799.3099.5395.8791.18

Ours76.2710096.8099.3887.8599.4071.4210099.6894.7210099.9298.6494.16

Some objects like glue and egg box are symmetric objects. The bold values given in Table 1 indicate the high value among the compared methods for pose estimation on the LINEMOD dataset with respect to ADD (-S) metric.