Scientific Programming / 2022 / Article / Tab 1 / Research Article
A Robust Convolutional Neural Network for 6D Object Pose Estimation from RGB Image with Distance Regularization Voting Loss Table 1 The performance on the LINEMOD dataset for objects pose estimation based on ADD (-S) scores.
Methods Ape Bench vise Cam Can Cat Driller Duck Egg box Glue Hole puncher Iron Lamp Phone Mean BB8 [29 ] 40.40 91.80 55.70 64.10 62.60 74.70 44.30 57.80 41.20 67.20 84.70 76.50 54.00 62.70 SSD6D [1 ] 65.00 80.00 78.00 86.00 70.00 73.00 66.00 100 100 49.00 78.00 73.00 79.00 79.00 YOLO6D [3 ] 21.62 81.80 36.57 68.80 41.82 63.51 27.23 69.58 80.02 42.63 74.97 71.11 47.74 55.95 DPOD [31 ] 53.28 95.34 90.36 94.10 60.38 97.72 66.01 99.72 93.83 65.83 99.80 88.11 74.24 82.98 Pix2Pose [33 ] 58.10 91.00 60.90 84.40 65.00 73.60 43.80 96.80 79.40 74.80 83.40 82.00 45.00 72.40 CDPN [32 ] 64.38 97.77 91.67 95.87 83.83 96.23 66.76 99.72 99.61 85.82 97.85 97.86 90.75 89.86 PoseCNN [5 ] 27.80 68.90 47.50 71.40 56.70 65.40 42.80 98.30 95.60 50.90 65.60 70.30 54.60 62.70 PVNet [8 ] 43.62 99.90 86.86 95.47 79.34 96.43 52.58 99.15 95.66 81.92 98.88 99.33 92.41 86.27 DPVL [11 ] 69.05 100 94.12 98.52 83.13 99.01 63.47 100 97.97 88.20 99.90 99.81 96.35 91.50 PDAL + AFAM [12 ] 69.43 100 92.45 99.21 87.72 99.01 67.79 100 98.94 86.01 99.38 99.81 95.10 91.91 L+ [7 ] 65.34 100 92.65 97.84 90.22 97.72 62.54 99.72 95.56 88.97 99.30 99.53 95.87 91.18 Ours 76.27 100 96.80 99.38 87.85 99.40 71.42 100 99.68 94.72 100 99.92 98.64 94.16
Some objects like glue and egg box are symmetric objects. The bold values given in Table 1 indicate the high value among the compared methods for pose estimation on the LINEMOD dataset with respect to ADD (-S) metric.