Scientific Programming / 2022 / Article / Tab 2 / Research Article
A Robust Convolutional Neural Network for 6D Object Pose Estimation from RGB Image with Distance Regularization Voting Loss Table 2 The performance on the occlusion LINEMOD dataset for pose estimation based on ADD (-S) scores.
Methods Ape Can Cat Driller Duck Egg box Glue Hole puncher Mean YOLO6D [3 ] 2.48 17.48 0.67 7.66 1.14 — 10.08 5.45 6.42 Pix2Pose [33 ] 22.00 44.70 22.70 44.70 15.00 25.20 32.40 49.50 32.00 PoseCNN [5 ] 9.60 45.20 0.93 41.40 19.60 22.00 38.50 22.10 24.90 PVNet [8 ] 15.81 63.30 16.68 65.65 25.24 50.17 49.62 39.67 40.77 DPVL [11 ] 19.23 69.76 21.06 71.58 34.27 47.32 39.65 45.27 43.52 PDAL + AFAM [12 ] 25.47 68.20 22.26 68.33 32.61 45.28 49.28 47.51 44.87 [7 ]29.58 69.10 21.74 70.10 32.08 47.58 55.24 52.22 47.23 Ours 22.44 73.31 24.23 75.07 38.60 51.43 44.08 50.11 47.40
The bold values given in Table 2 indicate the high performance on the occlusion among the compared methods for pose estimation. It is also required to bold the values of our proposed method from column number 2 to 6 (Can to Egg box).