Scientific Programming / 2022 / Article / Tab 3 / Research Article
A Robust Convolutional Neural Network for 6D Object Pose Estimation from RGB Image with Distance Regularization Voting Loss Table 3 The performance on the LINEMOD dataset for objects pose estimation based on 2D projection errors.
Methods Ape Bench vise Cam Can Cat Driller Duck Egg box Glue Hole puncher Iron Lamp Phone Mean BB8 [29 ] 96.60 99.10 86.00 91.20 98.80 80.90 92.20 91.00 92.30 95.30 84.80 75.80 85.30 89.30 YOLO6D [3 ] 92.10 95.06 93.24 97.44 97.41 79.41 94.65 90.33 96.53 92.86 82.94 76.87 86.07 90.37 CDPN [32 ] 96.86 98.35 98.73 99.41 99.8 95.34 98.59 98.97 99.23 99.71 97.24 95.49 97.64 98.10 PoseCNN [5 ] 83.00 50.00 71.90 69.80 92.00 43.60 91.80 91.10 88.00 82.10 41.80 48.40 58.80 70.20 PVNet [8 ] 99.23 99.81 99.21 99.90 99.30 96.92 98.02 99.34 98.45 100 99.18 98.27 99.42 99.00 DPVL [11 ] 99.04 99.71 99.41 100 99.70 98.12 99.06 99.43 99.51 100 99.69 99.14 99.42 99.40 L+ [7 ] 99.05 99.71 99.61 99.71 99.81 98.62 98.97 99.44 99.23 99.91 99.80 98.28 99.52 99.00 CSA6D [40 ] 98.60 95.80 98.80 97.40 99.50 95.10 98.40 99.90 99.90 98.20 97.80 95.50 97.60 98.10 Ours 99.42 99.83 99.55 100 99.86 98.83 99.59 99.84 99.86 100 99.91 99.53 99.65 99.68
The bold values given in this Table show the highest value(s) of performance on the LINEMOD dataset for objects pose estimation based on 2D projection errors.