Research Article

AOMC: An Adaptive Point Cloud Clustering Approach for Feature Extraction

Table 2

Comparison of run time on local feature point extraction.

Feature points number1,0241,5362,048
Farthest selection1.51 s3.56 s5.83 s
Random selection7 × 10−4 s1.11 × 10−3 s15 × 10−3 s
DBSCAN0.07 s0.08 s1.01 s
k-means (k = 10)0.32 s0.36 s0.47 s
Agglomerative clustering (n = 10)2.91 s2.96 s3.01 s
Ours0.55 s0.58 s0.64 s