Research Article
AOMC: An Adaptive Point Cloud Clustering Approach for Feature Extraction
Table 2
Comparison of run time on local feature point extraction.
| Feature points number | 1,024 | 1,536 | 2,048 | Farthest selection | 1.51 s | 3.56 s | 5.83 s | Random selection | 7 × 10−4 s | 1.11 × 10−3 s | 15 × 10−3 s | DBSCAN | 0.07 s | 0.08 s | 1.01 s | k-means (k = 10) | 0.32 s | 0.36 s | 0.47 s | Agglomerative clustering (n = 10) | 2.91 s | 2.96 s | 3.01 s | Ours | 0.55 s | 0.58 s | 0.64 s |
|
|