Research Article
AOMC: An Adaptive Point Cloud Clustering Approach for Feature Extraction
Table 4
Comparison of the map on the classification task. The best and the second-best methods are highlighted in red and green colors, respectively.
| Method | Mean intersection over union (mIoU) | Avg (%) | Airplane (%) | Bag (%) | Chair (%) | Laptop (%) | Knife (%) | Mug (%) | Rocket (%) | Cap (%) | Table (%) | Earphone (%) |
| Farthest selection | 81.60 | 82.40 | 81.10 | 90.70 | 90.60 | 86.10 | 95.10 | 54.50 | 89.90 | 82 | 68.50 | Random selection | 78.80 | 80.30 | 80 | 91 | 89 | 83.10 | 90.10 | 51.40 | 87.70 | 73 | 62 | DBSCAN | 79.70 | 79.20 | 78 | 89 | 90 | 83 | 95 | 56 | 82 | 80 | 65 | k-means (kā=ā10) | 80.70 | 83.10 | 74 | 88 | 91 | 84 | 87 | 57 | 90.10 | 81 | 72 | Agglomerative clustering | 79.30 | 81.40 | 73 | 83 | 84 | 83.40 | 91 | 59 | 88.40 | 80.40 | 69.40 | Ours | 83 | 84 | 79 | 91.70 | 89.40 | 89.90 | 94.30 | 61 | 83 | 84 | 74 |
|
|