Research Article
A Deep Neural Network-Based Target Recognition Algorithm for Robot Scenes
Table 3
MS COCO dataset test results.
| Methods | Basic network | AP0.5 : 0.95 | AP0.5 | AP0.75 | APS | APM | APL | AR1 | AR10 | AR100 | ARs | ARM | ARL |
| Faster | VGG16 | 21.9 | 42.7 | — | — | — | — | — | — | — | — | — | — | ION | VGG16 | 23.6 | 43.2 | 23.6 | 6.4 | 24.1 | 38.3 | 23.2 | 32.7 | 33.2 | 10.1 | 37.7 | 53.6 | R-FCN | Residual-101 | 29.2 | 51.5 | — | 10.3 | 32.4 | 43.3 | — | — | — | — | — | — | DSOD | DS/64/192/4 | 29.3 | 47.3 | 30.6 | 9.4 | 31.5 | 47 | 27.3 | 40.7 | 43 | 16.7 | 47.1 | 65 | YOLOv2 | Darknet | 21.6 | 44 | 19.2 | 9 | 28.9 | 41.9 | 24.8 | 37.5 | 39.8 | 14 | 43.5 | 59 | SSD300 | VGG16 | 25.1 | 43.1 | 25.8 | 6.6 | 25.9 | 41.4 | 23.7 | 35.1 | 37.2 | 11.2 | 40.4 | 58.4 | DSSD321 | Residual-101 | 28 | 46.1 | 29.2 | 7.4 | 28.1 | 47.6 | 25.5 | 37.1 | 39.4 | 12.7 | 42 | 62.6 | STDN321 | DenseNet | 28 | 45.6 | 29.4 | 7.9 | 29.7 | 45.1 | 24.4 | 36.1 | 38.4 | 12.5 | 42.7 | 60.1 | Ours320 | VGG16 | 28.2 | 47.7 | 29.1 | 10.3 | 31.4 | 43.7 | 25.8 | 38.9 | 41.2 | 16.9 | 47.2 | 61 | SSD512 | VGG16 | 28.8 | 48.5 | 30.3 | 10.9 | 31.8 | 43.5 | 26.1 | 39.5 | 42 | 16.5 | 46.6 | 60.8 | DSSD513 | Residual-101 | 33.2 | 53.3 | 35.2 | 13 | 35.4 | 51.1 | 28.9 | 43.5 | 46.2 | 21.8 | 49.1 | 66.4 | STDN513 | DenseNet | 31.8 | 51 | 33.6 | 14.4 | 36.1 | 43.4 | 27 | 40.1 | 41.9 | 18.3 | 48.3 | 57.3 | Ours512 | VGG16 | 33.1 | 52.3 | 32.4 | 15.6 | 34.6 | 42.7 | 28.3 | 42.6 | 45.6 | 25.9 | 50.8 | 60.1 |
|
|
Bold values represent the experimental results of our method.
|