Research Article

Multiple Context Learning Networks for Visual Question Answering

Table 6

Comparison with previous state-of-the-art methods on VQA v2.0 test dataset.

ModelTest-devTest-std
AllY/NNumOtherAll

BUTD [13]65.3281.8244.2156.0565.67
MFH [32]68.7685.3149.5659.89-
Counter [33]68.0983.1451.6258.9768.09
v-AGCN [17]65.9482.5845.1256.7166.17
ReGAT [16]70.2786.0854.4260.3370.58
DFAF [20]70.2286.0953.3260.4970.34
MCAN [21]70.6386.8253.2660.7270.90
MEDAN [22]70.6087.1052.6960.5671.01
MCLN-LSTM70.2685.9553.1860.7270.63
MCLN-BERT71.0587.4353.2861.0871.48