Research Article

Robust Extreme Learning Machine Using New Activation and Loss Functions Based on M-Estimation for Regression and Classification

Table 6

Experimental results on real–world dataset abalone with 0%–20% Outlier's levels.

Wang et al. [35] used sigmoid activation function in existing ELM and its variants

ELMWELMORELMIRRELMIRRELM
Outliers(RMSE, SD)(RMSE, SD)(RMSE, SD)(RMSE, SD)(RMSE, SD)
0%2.1382, 0.06922.1532, 0.07372.1909, 0.05762.2106, 0.06462.1350, 0.0625
5%2.3182, 0.05332.1557, 0.06092.1712, 0.05892.1928, 0.06322.1455, 0.0552
10%2.6679, 0.05332.1603, 0.05972.1667, 0.0822.1724, 0.05792.1499, 0.0621
15%3.1917, 0.07632.1701, 0.09092.1713, 0.08202.1492, 0.06032.1508, 0.0643
20%3.2161, 0.09762.2297, 0.06362.2168, 0.07412.1694, 0.07552.1633, 0.0716