Research Article

Robust Extreme Learning Machine Using New Activation and Loss Functions Based on M-Estimation for Regression and Classification

Table 7

Percent accuracy with SD of different existing and proposed activation functions in basic ELM.

AfELM 50 IRISELM 300 SatImageELM 1000 E-mail spam filtering

Sigmoid95.67, 4.8387.5, 0.51887450088.00000, 1.387233
Tan-sigmoid96.00, 2.1187.7857, 0.699293288.00000, 1.732051
Sine95.33333, 4.21637088.5714, 0.937614588.66667, 1.527525
Cosine98.00000, 2.81091388.3571, 0.633323788.66667, 1.527525
Bentidle97.00000, 3.31476386.21429, 0.841897490.33333, 0.5773503
RAF96.00000, 3.78430888.92857, 0.828741976.33333, 0.5773503
Proposed-197.66667, 2.24982988.07143, 0.615727988.33333, 1.527525
Proposed-295.66667, 3.53116688.21429, 0.611249888.66667, 1.154701
Proposed-385.66667, 6.67592075.00, 0.679366200088.66667, 1.527525
Proposed-496.00000, 4.09757589.85714, 0.864437888.66667, 1.527525
Proposed-596.66667, 2.72165587.78571, 0.578934289.00000, 1.732051
Proposed-697.00000, 4.83045986.85714, 0.744946389.00000, 1.732051
Proposed-796.33333, 1.89215460.0, 5.791240000070.66667, 1.154701
Proposed-898.33333, 2.35702388.07143, 0.916874893.66667, 0.5773503
Proposed-995.66667, 2.74424287.64286, 0.744946393.66667, 0.5773503
Proposed-1096.66667, 3.51364277.78571, 1.528125071.66667, 0.5773503
Proposed-1195.33333, 4.49965788.28571, 0.611249871.66667, 0.5773503