Research Article
An Empirical Study on the Measurement of Forestry Total Factor Productivity Based on DEA Malmquist Model
Table 3
Index and decomposition of average total factor productivity of forestry in 31 provinces in China from1997 to 2020.
| Region | Technical efficiency | Technical progress | Pure technical efficiency | Scale efficiency | Total factor productivity |
| Shanxi | 1.016 | 1.079 | 1.009 | 1.005 | 1.093 | Inner Mongolia | 1.048 | 1.017 | 1.000 | 1.056 | 1.062 | Jilin | 1.000 | 1.008 | 1.000 | 1.000 | 1.008 | Heilongjiang | 1.059 | 0.953 | 1.000 | 1.059 | 1.009 | Henan | 0.998 | 0.978 | 1.000 | 0.998 | 0.979 | Hubei | 1.016 | 1.017 | 0.999 | 1.019 | 1.035 | Hainan | 1.000 | 1.135 | 1.000 | 1.000 | 1.135 | Chongqing | 1.000 | 1.088 | 1.000 | 1.000 | 1.088 | Sichuan | 1.079 | 1.051 | 1.006 | 1.079 | 1.136 | Guizhou | 1.016 | 1.029 | 1.015 | 1.012 | 1.047 | Yunnan | 1.027 | 1.015 | 1.006 | 1.027 | 1.013 | Tibet | 1.000 | 1.006 | 1.000 | 1.000 | 1.006 | Shanxi | 0.983 | 0.983 | 0.996 | 0.985 | 0.958 | Gansu | 1.015 | 0.999 | 0.995 | 1.026 | 1.009 | Qinghai | 0.998 | 1.017 | 1.000 | 0.998 | 1.013 | Ningxia | 1.018 | 1.021 | 0.999 | 1.019 | 1.047 | Xinjiang | 1.010 | 1.042 | 1.005 | 1.009 | 1.053 | Beijing | 0.996 | 1.049 | 1.000 | 0.994 | 1.043 | Tianjin | 1.000 | 1.021 | 1.000 | 1.000 | 1.021 | Hebei | 1.001 | 1.046 | 1.000 | 1.001 | 1.046 | Liaoning | 1.007 | 1.007 | 1.004 | 0.999 | 1.005 | Shanghai | 1.000 | 1.048 | 1.000 | 1.000 | 1.048 | Jiangsu | 1.001 | 1.108 | 1.000 | 1.001 | 1.109 | Zhejiang | 1.000 | 1.167 | 1.000 | 1.000 | 1.167 | Anhui | 1.013 | 0.946 | 1.001 | 1.009 | 0.957 | Fujian | 1.009 | 1.079 | 1.000 | 1.009 | 1.088 | Jiangxi | 0.999 | 1.004 | 1.000 | 0.999 | 0.999 | Shandong | 1.000 | 1.041 | 1.000 | 1.000 | 1.041 | Hunan | 1.051 | 1.005 | 1.008 | 1.034 | 1.059 | Guangdong | 1.031 | 1.117 | 1.002 | 1.029 | 1.143 | Guangxi | 1.035 | 1.045 | 1.005 | 1.039 | 1.069 | National average | 1.013 | 1.036 | 1.002 | 1.013 | 1.047 |
|
|