Research Article
Deviation Detection in Clinical Pathways Based on Business Alignment
Algorithm 1
The noise filter algorithm.
| Input: diagnosis and treatment log L, precedence relationship matrix M of N1; | | Output: filtered log L′. | (1) | S = Ø; | (2) | L′ = L; | (3) | for all σ ∈ L′ do | (4) | S = S ∪ {σ (1)}; | (5) | for all cur ∈ σ do | (6) | //terminate if current activity is the last one | (7) | if σ.indexOf (cur) == σ.size − 1 then | (8) | break; | (9) | end | (10) | post = σ (σ.indexOf (cur) + 1); | (11) | if (∃a ∈ S) ⇒ (M [α−1 (a)][α−1(post)] == “#”) then | (12) | L′ = L′ – {σ}; | (13) | //activity a can occur earlier than activity post, but the reverse is not true | (14) | else if (∃a ∈ S) ⇒ (M [α−1 (a)][α−1(post)] == “⟶” && M [α−1(post)][α−1(a)] == “#”) then | (15) | for all (a ∈ S) ˄ (M [α−1(a)][α−1(post)] == “⟶” && M [α−1(post)][α−1(a)] == “#”) do | (16) | S = S – {a}; | (17) | end | (18) | S = S ∪ {post}; | (19) | else | (20) | S = S ∪ {post}; | (21) | end | (22) | end | (23) | S = Ø; | (24) | end | (25) | return L′; |
|