Research Article

Deviation Detection in Clinical Pathways Based on Business Alignment

Algorithm 1

The noise filter algorithm.
Input: diagnosis and treatment log L, precedence relationship matrix M of N1;
Output: filtered log L′.
(1)S = Ø;
(2)L′ = L;
(3)for all σ ∈ Ldo
(4)  S = S ∪ {σ (1)};
(5)  for all cur ∈ σ do
(6)   //terminate if current activity is the last one
(7)   if σ.indexOf (cur) == σ.size − 1 then
(8)    break;
(9)   end
(10)   post = σ (σ.indexOf (cur) + 1);
(11)   if (∃a ∈ S)  ⇒  (M [α−1 (a)][α−1(post)] == “#”) then
(12)    L′ = L′ – {σ};
(13)    //activity a can occur earlier than activity post, but the reverse is not true
(14)   else if (∃a ∈ S)  ⇒  (M [α−1 (a)][α−1(post)] == “⟶” && M [α−1(post)][α−1(a)] == “#”) then
(15)    for all (a ∈ S) ˄ (M [α−1(a)][α−1(post)] == “⟶” && M [α−1(post)][α−1(a)] == “#”) do
(16)     S = S – {a};
(17)    end
(18)    S = S ∪ {post};
(19)   else
(20)    S = S ∪ {post};
(21)   end
(22)  end
(23)  S = Ø;
(24)end
(25)return L′;