Research Article

Solving Capacitated Vehicle Routing Problem by an Improved Genetic Algorithm with Fuzzy C-Means Clustering

Table 2

Simulation results of the proposed algorithm.

InstanceBSKBSAVSAVT/s
CostCostGap (%)CostGap (%)

A-n33-k56616610.0666.250.790.24
A-n33-k67427430.13749.10.960.15
A-n36-k57997990.0800.050.130.14
A-n37-k69499550.63986.753.980.3
A-n38-k57307300.0747.052.340.16
A-n39-k58228220.0848.03.160.26
A-n39-k68318550.48864.54.030.19
A-n44-k79379370.0984.25.040.33
B-n31-k56726720.0683.11.650.15
B-n34-k57887880.0798.351.310.19
B-n35-k59559550.0974.32.020.17
B-n38-k68058050.0822.12.120.24
B-n41-k68298320.36853.52.960.24
B-n43-k67427420.0785.552.230.26
B-n45-k57517550.53768.852.380.36
B-n52-k77477440.0766.22.570.42
P-n16-k84504500.0450.00.00.1
P-n19-k22122120.0212.00.00.02
P-n20-k22162160.0216.00.00.03
P-n21-k22112110.0211.00.00.04
P-n22-k22162160.0216.00.00.04
P-n22-k85905900.0590.00.00.05
P-n23-k85295290.4531.10.40.16
P-n45-k55105155.85539.855.850.29
P-n55-k85885905.48620.255.480.55