Research Article
A Software Defect Prediction Approach Based on Hybrid Feature Dimensionality Reduction
Table 1
Experimental results of two kinds of dimensionality reduction methods.
| Projects | Metrics | ALL | IG | KPCA |
| Ant | AUC | 0.924 | 0.924 | 0.944 | F1 | 0.939 | 0.939 | 0.960 | MCC | 0.854 | 0.854 | 0.906 |
| Arc | AUC | 0.772 | 0.772 | 0.736 | F1 | 0.782 | 0.787 | 0.756 | MCC | 0.547 | 0.551 | 0.480 |
| Camel | AUC | 0.964 | 0.978 | 0.957 | F1 | 0.961 | 0.976 | 0.954 | MCC | 0.927 | 0.955 | 0.912 |
| Poi | AUC | 0.776 | 0.790 | 0.790 | F1 | 0.720 | 0.735 | 0.735 | MCC | 0.532 | 0.559 | 0.559 |
| Redktor | AUC | 0.801 | 0.777 | 0.869 | F1 | 0.778 | 0.745 | 0.852 | MCC | 0.598 | 0.557 | 0.733 |
| Tomcat | AUC | 0.850 | 0.853 | 0.850 | F1 | 0.841 | 0.853 | 0.850 | MCC | 0.699 | 0.714 | 0.708 |
| Velocity | AUC | 0.782 | 0.780 | 0.780 | F1 | 0.787 | 0.794 | 0.794 | MCC | 0.563 | 0.558 | 0.558 |
| Xalan | AUC | 0.807 | 0.817 | 0.838 | F1 | 0.789 | 0.804 | 0.828 | MCC | 0.615 | 0.633 | 0.675 |
| Xerces | AUC | 0.789 | 0.544 | 0.795 | F1 | 0.795 | 0.788 | 0.792 | MCC | 0.611 | 0.601 | 0.596 |
| AVE | AUC | 0.829 | 0.830 | 0.840 | F1 | 0.821 | 0.824 | 0.836 | MCC | 0.661 | 0.665 | 0.681 |
|
|