Research Article
Architecture of Deep Convolutional Encoder-Decoder Networks for Building Footprint Semantic Segmentation
Table 1
Comparison metrics of the models tested in this study.
| Model | Encoder | IOU | F1-score | Precision | Recall |
| PSPNet | VGG16 | 0.7784 | 0.8743 | 0.8405 | 0.911 | VGG19 | 0.7772 | 0.8735 | 0.8426 | 0.9068 | ResNet50 | 0.7176 | 0.8452 | 0.8261 | 0.8653 | DenseNet169 | 0.6669 | 0.7946 | 0.7762 | 0.8139 | Xception | 0.6528 | 0.7844 | 0.7566 | 0.8144 |
| LinkNet | VGG16 | 0.8179 | 0.8992 | 0.8585 | 0.9439 | VGG19 | 0.8193 | 0.9001 | 0.8568 | 0.9481 | ResNet50 | 0.82 | 0.9003 | 0.8671 | 0.9363 | DenseNet169 | 0.8238 | 0.9027 | 0.8808 | 0.9256 | Xception | 0.8127 | 0.8959 | 0.8715 | 0.9216 |
| FPN | VGG16 | 0.6952 | 0.7681 | 0.7403 | 0.7981 | VGG19 | 0.6812 | 0.7528 | 0.7252 | 0.7826 | ResNet50 | 0.6656 | 0.7481 | 0.7255 | 0.7721 | DenseNet169 | 0.6632 | 0.7476 | 0.7288 | 0.7673 | Xception | 0.6471 | 0.7336 | 0.7120 | 0.7567 |
| U-Net | VGG16 | 0.8302 | 0.9067 | 0.8846 | 0.9298 | VGG19 | 0.8296 | 0.9064 | 0.8827 | 0.9314 | ResNet50 | 0.8233 | 0.9023 | 0.8741 | 0.9324 | DenseNet169 | 0.826 | 0.9041 | 0.8788 | 0.931 | Xception | 0.821 | 0.901 | 0.8782 | 0.925 |
|
|