Research Article

Architecture of Deep Convolutional Encoder-Decoder Networks for Building Footprint Semantic Segmentation

Table 1

Comparison metrics of the models tested in this study.

ModelEncoderIOUF1-scorePrecisionRecall

PSPNetVGG160.77840.87430.84050.911
VGG190.77720.87350.84260.9068
ResNet500.71760.84520.82610.8653
DenseNet1690.66690.79460.77620.8139
Xception0.65280.78440.75660.8144

LinkNetVGG160.81790.89920.85850.9439
VGG190.81930.90010.85680.9481
ResNet500.820.90030.86710.9363
DenseNet1690.82380.90270.88080.9256
Xception0.81270.89590.87150.9216

FPNVGG160.69520.76810.74030.7981
VGG190.68120.75280.72520.7826
ResNet500.66560.74810.72550.7721
DenseNet1690.66320.74760.72880.7673
Xception0.64710.73360.71200.7567

U-NetVGG160.83020.90670.88460.9298
VGG190.82960.90640.88270.9314
ResNet500.82330.90230.87410.9324
DenseNet1690.8260.90410.87880.931
Xception0.8210.9010.87820.925