Research Article
Dual-Core Adaptive NLM Image Denoising Algorithm Based on Variable-Size Window and Neighborhood Multifeatures
Table 2
SSIM table for different simulation results.
| Image | σ | Noisy image | Traditional NLM | Gaussian kernel NLM | Literature [12] method | Literature [13] method | Literature [14] method | Literature [15] method | Algorithms in this paper |
| jetplane | 20 | 0.637 | 0.804 | 0.851 | 0.804 | 0.851 | 0.804 | 0.851 | 0.832 | 40 | 0.601 | 0.761 | 0.768 | 0.771 | 0.781 | 0.791 | 0.799 | 0.815 | 60 | 0.572 | 0.623 | 0.675 | 0.683 | 0.715 | 0.723 | 0.745 | 0.781 |
| C.man | 20 | 0.613 | 0.685 | 0.728 | 0.785 | 0.798 | 0.815 | 0.828 | 0.816 | 40 | 0.581 | 0.628 | 0.631 | 0.648 | 0.651 | 0.678 | 0.731 | 0.768 | 60 | 0.532 | 0.605 | 0.621 | 0.635 | 0.639 | 0.655 | 0.661 | 0.679 |
| Boat | 20 | 0.623 | 0.704 | 0.725 | 0.734 | 0.765 | 0.784 | 0.825 | 0.814 | 40 | 0.564 | 0.631 | 0.652 | 0.671 | 0.692 | 0.711 | 0.752 | 0.792 | 60 | 0.528 | 0.611 | 0.626 | 0.631 | 0.656 | 0.661 | 0.676 | 0.687 |
| Lax | 20 | 0.625 | 0.636 | 0.662 | 0.686 | 0.712 | 0.736 | 0.762 | 0.751 | 40 | 0.579 | 0.629 | 0.648 | 0.659 | 0.668 | 0.689 | 0.718 | 0.732 | 60 | 0.531 | 0.579 | 0.611 | 0.639 | 0.641 | 0.651 | 0.661 | 0.665 |
| Lena | 20 | 0.612 | 0.713 | 0.732 | 0.748 | 0.772 | 0.786 | 0.827 | 0.821 | 40 | 0.599 | 0.635 | 0.661 | 0.679 | 0.702 | 0.718 | 0.749 | 0.789 | 60 | 0.524 | 0.612 | 0.624 | 0.641 | 0.648 | 0.657 | 0.671 | 0.692 |
| Pepper | 20 | 0.619 | 0.698 | 0.718 | 0.729 | 0.771 | 0.792 | 0.831 | 0.824 | 40 | 0.576 | 0.641 | 0.652 | 0.661 | 0.672 | 0.686 | 0.724 | 0.774 | 60 | 0.511 | 0.603 | 0.621 | 0.638 | 0.652 | 0.667 | 0.681 | 0.698 |
|
|