Research Article
A Hybrid Model Using PCA and BP Neural Network for Time Series Prediction in Chinese Stock Market with TOPSIS Analysis
Table 5
Specific feature vectors for each principal component.
| | Prin1 | Prin2 | Prin3 | Prin4 | Prin5 | Prin6 | Prin7 | Prin8 | Prin9 | Prin10 | Prin11 |
| X1 | 0.403776 | −0.06343 | −0.04194 | −0.071962 | −0.030899 | 0.417095 | 0.088818 | −0.321775 | 0.734611 | 0.000000 | 0.000000 | X2 | 0.405173 | 0.043595 | −0.039633 | −0.008585 | 0.101709 | 0.324936 | −0.694955 | 0.469851 | −0.112426 | −0.000005 | 0.000000 | X3 | 0.402193 | −0.099185 | −0.045376 | −0.016941 | −0.11609 | 0.201311 | 0.685303 | 0.506562 | −0.214031 | 0.000002 | 0.000000 | X4 | 0.408378 | 0.009652 | −0.024476 | 0.081417 | 0.026283 | −0.046728 | −0.014065 | −0.438702 | −0.379875 | 0.697187 | 0.000000 | X5 | 0.365228 | 0.161454 | 0.011546 | 0.412207 | 0.191979 | −0.687919 | 0.008424 | 0.207207 | 0.342636 | 0.000001 | 0.000000 | X6 | −0.195147 | 0.429207 | 0.086416 | 0.742412 | 0.110408 | 0.43842 | 0.10275 | −0.038111 | −0.051416 | 0.000000 | 0.000000 | X7 | 0.404862 | 0.093624 | −0.026703 | 0.056164 | −0.070932 | −0.057712 | −0.021065 | −0.421773 | −0.362884 | −0.710683 | 0.000000 | X8 | 0.032018 | 0.635394 | −0.020326 | −0.178997 | −0.730224 | −0.089609 | −0.054917 | 0.064928 | 0.073813 | 0.094127 | 0.000000 | X9 | 0.017654 | 0.601136 | −0.044516 | −0.471726 | 0.622271 | 0.02987 | 0.158782 | −0.008756 | −0.020369 | 0.000000 | 0.000000 | X10 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | X11 | 0.086860 | −0.001993 | 0.991617 | −0.094984 | −0.002705 | 0.006439 | 0.003375 | 0.008009 | −0.001276 | 0.000000 | 0.000000 |
|
|