Research Article

A Hybrid Model Using PCA and BP Neural Network for Time Series Prediction in Chinese Stock Market with TOPSIS Analysis

Table 5

Specific feature vectors for each principal component.

Prin1Prin2Prin3Prin4Prin5Prin6Prin7Prin8Prin9Prin10Prin11

X10.403776−0.06343−0.04194−0.071962−0.0308990.4170950.088818−0.3217750.7346110.0000000.000000
X20.4051730.043595−0.039633−0.0085850.1017090.324936−0.6949550.469851−0.112426−0.0000050.000000
X30.402193−0.099185−0.045376−0.016941−0.116090.2013110.6853030.506562−0.2140310.0000020.000000
X40.4083780.009652−0.0244760.0814170.026283−0.046728−0.014065−0.438702−0.3798750.6971870.000000
X50.3652280.1614540.0115460.4122070.191979−0.6879190.0084240.2072070.3426360.0000010.000000
X6−0.1951470.4292070.0864160.7424120.1104080.438420.10275−0.038111−0.0514160.0000000.000000
X70.4048620.093624−0.0267030.056164−0.070932−0.057712−0.021065−0.421773−0.362884−0.7106830.000000
X80.0320180.635394−0.020326−0.178997−0.730224−0.089609−0.0549170.0649280.0738130.0941270.000000
X90.0176540.601136−0.044516−0.4717260.6222710.029870.158782−0.008756−0.0203690.0000000.000000
X100.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000001.000000
X110.086860−0.0019930.991617−0.094984−0.0027050.0064390.0033750.008009−0.0012760.0000000.000000