Research Article
Combining DBN and FCM for Fault Diagnosis of Roller Element Bearings without Using Data Labels
Table 5
The results of classification accuracy.
| Mode | Dataset | The accuracy of each cluster (%) | Total (%) | NR | BF1 | IRF1 | ORF2 | BF2 | IRF2 | ORF2 | BF3 | IRF3 | ORF3 |
| EEMD-FE-PCA-FCM (k = 2) | A | 93.3 | 100 | 60 | 100 | 100 | 100 | 93.3 | 100 | 100 | 26.7 | 87.33 | B | 100 | 100 | 100 | 63.3 | 100 | 73.3 | 100 | 100 | 100 | 30 | 86.69 | C | 100 | 100 | 56.7 | 43.3 | 96.77 | 96.7 | 66.7 | 100 | 100 | 100 | 76.34 |
| MD-SVD-FCM (k = 2) | A | 100 | 100 | 100 | 70 | 100 | 100 | 33.3% | 100 | 23.3 | 13.3 | 77 | B | 90 | 100 | 100 | 56.7 | 100 | 86.7 | 100 | 100 | 30 | 43.3 | 80.67 | C | 76.7 | 100 | 100 | 76.7 | 23.67 | 100 | 23.3 | 100 | 60 | 100 | 76.037 |
| DBN-PCA-FCM (k = 2) | A | 100 | 100 | 96.7 | 100 | 100 | 100 | 100 | 100 | 90 | 100 | 98.67 | B | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 93.3 | 100 | 100 | 99.33 | C | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
|
|