Research Article
Deep Domain Adaptation Model for Bearing Fault Diagnosis with Domain Alignment and Discriminative Feature Learning
Table 1
Details of 1DCNN architecture used in experiments.
| No. | Layer type | Kernel size | Stride | Kernel number | Output | Padding |
| 1 | Convolution1 | 32 × 1 | 8 × 1 | 32 | 253 × 32 | Yes | 2 | Pooling1 | 2 × 1 | 2 × 1 | 32 | 126 × 32 | No | 3 | Convolution2 | 3 × 1 | 2 × 1 | 64 | 124 × 64 | Yes | 4 | Pooling2 | 2 × 1 | 2 × 1 | 64 | 62 × 64 | No | 5 | Convolution3 | 3 × 1 | 2 × 1 | 64 | 60 × 64 | Yes | 6 | Pooling3 | 2 × 1 | 2 × 1 | 64 | 30 × 64 | No | 7 | Convolution4 | 3 × 1 | 1 × 1 | 64 | 28 × 64 | Yes | 8 | Pooling4 | 2 × 1 | 2 × 1 | 64 | 14 × 64 | No | 9 | Fully connected1 | 100 | | 1 | 100 × 1 | | 10 | Fully connected2 | 64 | | 1 | 64 × 1 | | 11 | Softmax | 10 | | 1 | 10 | |
|
|