Research Article

Study on Simplified Model and Numerical Solution of High-Speed Angular Contact Ball Bearing

Table 1

Initialization phase algorithm structure adjustment part of the code.

Generate δa, δr

(1) def calculate (self)
(2) rnd = np.random.random (size = self.len-2self.z) # example: if self.len=5, rnd= (0.29049083 0.96149427 0.75)
(3)  for i, k in zip (range(0, self.len-2self.z), range (0, self.len-2 self.z)):
(4)   self.chrom 3(i) = self. bound (0, 2self.z + i) + (self.bound (1, 2 self. z + i) − self.bound (0, 2 self. z + i)) rnd(k)
(5)  for i in range (0, self.len-2 self.z):
(6)   self.X (2 self.z + i) = self.chrom3(i) # δa, δr
   #self.X (2self.z+1) =self.chrom3(2self.z+1)
   #self.X (4self.z+2) =self.chrom(4self.z+2)
(7)  super().some_necessary_calculations()
(8)  r = 0
(9)  while r < self.z:
(10)   if self.A1 (r) < 0 or self.A2 (r) < 0:
(11)       rnd = np.random.random (size = self.len-2 self.z) # example: if self.len=5, rnd= (0.29049083 0.96149427 0.75)
(12)    for i, k in zip (range (0, self.len-2 self.z), range (0, self.len - 2 self.z)):
(13)        self.chrom3(i) = self.bound (0, 2 self.z + i) + (self.bound (1, 2 self.z + i) − self.bound (0, 2 self.z + i)) rnd (k) # xij=xmin, j + rand (0, 1) (xmax, j − xmin, j)
(14)    for i in range(0, self.len-2 self.z):
(15)     self.X (2 self.z + i) = self.chrom3(i)
      #self.X (2self.z+1) =self.chrom3(2self.z+1)
      #self.X (4self.z+2) =self.chrom(4self.z+2)
(16)     super().some_necessary_calculations()
(17)    r = 0