Research Article

Study on Simplified Model and Numerical Solution of High-Speed Angular Contact Ball Bearing

Table 2

Initialization phase algorithm structure adjustment of another part of the code.

Generate αi, αo

i
(1)  rnd = np.random.random (size = self.z//2 + 1) # example: if self.len=5, rnd= (0.29049083 0.96149427 0.75)
(2)  rand1 = sorted (rnd) #size= 8
(3)   for i in range (0,self.z//2 + 1):
(4)   self.rand1(i) = rand1(i)
(5)   for i in range(self.z//2 + 1,self.z):
(6)    self.rand1(i) = self.rand1(self.z − i) #size=16
(7)   for i, k in zip (range(0,self.z//2 + 1), range(0, self.z//2 + 1)):
(8)    self.chrom1(i) = self.bound (0, i) + (self.bound (1, i) − self.bound (0, i)) self.rand1(k) # Xij=Xmin, j +rand
(9)   for i in range (self.z//2 + 1,self.z):
(10)    self.chrom1(i) = self.chrom1 (self.z − i)

o
(11)  rnd = np.random.random (size = self.z//2 + 1) # example: if self.len=5, rnd= (0.29049083 0.96149427 0.75)
(12)  rand2 = sorted (rnd,reverse = True) #size=8
(13)  for i in range(0,self.z//2 + 1):
(14)   self.rand2(i) = rand 2(i)
(15)  for i in range (self.z//2 + 1,self.z):
(16)   self.rand2(i) = self.rand2 (self.z − i) #size=16
(17)  for i, k in zip (range (0, self.z//2 + 1), range (0, self.z//2 + 1)):
(18)   self.chrom2(i) = self.boun ((0, i + self.z) + (self.bound (1, i + self.z) − self.bound (0, i + self.z)) self.rand2(k) # Xij = Xmin, j + rand (0, 1) (Xmax,jXmin, j) # example: if self.len=5, rnd= (0.29049083 0.96149427 0.75)
(19)  for i in range (self.z//2 + 1, self.z):
(20)   self.chrom2(i) = self.chrom2 (self.z − i)