Research Article

Multisignal VGG19 Network with Transposed Convolution for Rotating Machinery Fault Diagnosis Based on Deep Transfer Learning

Table 3

Classification results for the gearbox dataset.

 Fault diagnosis methodTime windowChannelBearing (20-0)Bearing (30-2)Gearset (20-0) (%)Gearset (30-2) (%)

[35]Premodel (VGG16)1024198.90%98.84%98.7098.07

[36]SAE-DNN20000187.50%92.10%92.7091.90
GRU20000191.20%92.40%93.8090.70
BiGRU20000193.00%93.60%93.8090.70
LFGRU20000193.20%94.00%94.8095.80

[38]DSR1024199.5999.78
SACNN1024199.8699.88

 CNN trained from scratch512198.08%98.08%97.8097.80
DNN512197.56%97.56%93.6893.68
Premodel (VGG19)512899.78%99.78%99.9999.99