Research Article
A New Generative Neural Network for Bearing Fault Diagnosis with Imbalanced Data
Table 5
Performance of different deep learning methods in ten-classes diagnosis.
| Ten classes | Precision | Recall | F1-score | AUC |
| GCNN | Case 2 | 0.893 | 0.874 | 0.883 | 0.996 | Case 3 | 0.942 | 0.896 | 0.919 | 0.996 | Case 4 | 0.812 | 0.740 | 0.774 | 0.985 | Case 5 | 0.903 | 0.797 | 0.846 | 0.985 | Case 6 | 0.912 | 0.755 | 0.826 | 0.970 | Case 7 | 0.862 | 0.743 | 0.798 | 0.967 |
| WCNN | Case 2 | 0.917 | 0.907 | 0.912 | 0.986 | Case 3 | 0.932 | 0.921 | 0.926 | 0.985 | Case 4 | 0.833 | 0.788 | 0.810 | 0.951 | Case 5 | 0.872 | 0.852 | 0.862 | 0.959 | Case 6 | 0.870 | 0.855 | 0.862 | 0.945 | Case 7 | 0.833 | 0.792 | 0.812 | 0.958 |
| NCNN | Case 2 | 0.918 | 0.863 | 0.890 | 0.988 | Case 3 | 0.901 | 0.829 | 0.863 | 0.986 | Case 4 | 0.865 | 0.788 | 0.824 | 0.974 | Case 5 | 0.880 | 0.805 | 0.841 | 0.970 | Case 6 | 0.800 | 0.691 | 0.741 | 0.922 | Case 7 | 0.734 | 0.574 | 0.644 | 0.926 |
| FNN | Case 2 | 0.642 | 0.522 | 0.576 | 0.829 | Case 3 | 0.640 | 0.543 | 0.587 | 0.837 | Case 4 | 0.542 | 0.438 | 0.485 | 0.777 | Case 5 | 0.563 | 0.453 | 0.502 | 0.814 | Case 6 | 0.563 | 0.409 | 0.474 | 0.783 | Case 7 | 22 | 0.485 | 0.544 | 0.812 |
|
|