Research Article

A New Generative Neural Network for Bearing Fault Diagnosis with Imbalanced Data

Table 5

Performance of different deep learning methods in ten-classes diagnosis.

Ten classesPrecisionRecallF1-scoreAUC

GCNNCase 20.8930.8740.8830.996
Case 30.9420.8960.9190.996
Case 40.8120.7400.7740.985
Case 50.9030.7970.8460.985
Case 60.9120.7550.8260.970
Case 70.8620.7430.7980.967

WCNNCase 20.9170.9070.9120.986
Case 30.9320.9210.9260.985
Case 40.8330.7880.8100.951
Case 50.8720.8520.8620.959
Case 60.8700.8550.8620.945
Case 70.8330.7920.8120.958

NCNNCase 20.9180.8630.8900.988
Case 30.9010.8290.8630.986
Case 40.8650.7880.8240.974
Case 50.8800.8050.8410.970
Case 60.8000.6910.7410.922
Case 70.7340.5740.6440.926

FNNCase 20.6420.5220.5760.829
Case 30.6400.5430.5870.837
Case 40.5420.4380.4850.777
Case 50.5630.4530.5020.814
Case 60.5630.4090.4740.783
Case 7220.4850.5440.812