Research Article

A New Generative Neural Network for Bearing Fault Diagnosis with Imbalanced Data

Table 6

Performance of different deep learning methods in four-classes diagnosis.

FourPrecisionRecallF1-scoreAUC

GCNNCase 20.9580.9190.9380.996
Case 30.9560.9560.9560.995
Case 40.9840.9840.9841.000
Case 50.8700.8390.8550.988
Case 60.8330.8000.8160.971
Case 70.8720.8720.8720.975

WCNNCase 20.9310.9050.9180.994
Case 30.7760.7650.9110.928
Case 40.8520.8390.8460.943
Case 50.8210.8210.8210.886
Case 60.7200.7200.7200.869
Case 70.7230.7230.7230.922

NCNNCase 20.8570.8110.8330.972
Case 30.8280.7790.8030.939
Case 40.7880.6610.7190.913
Case 50.8460.7860.8150.932
Case 60.7670.6600.7100.858
Case 70.7560.6600.7050.907

FNNCase 20.6620.6080.6340.744
Case 30.5670.5590.5630.702
Case 40.6720.6610.6670.771
Case 50.5890.5890.5890.710
Case 60.5870.5400.5630.725
Case 70.6740.6600.6670.753