Research Article
A New Generative Neural Network for Bearing Fault Diagnosis with Imbalanced Data
Table 6
Performance of different deep learning methods in four-classes diagnosis.
| Four | Precision | Recall | F1-score | AUC |
| GCNN | Case 2 | 0.958 | 0.919 | 0.938 | 0.996 | Case 3 | 0.956 | 0.956 | 0.956 | 0.995 | Case 4 | 0.984 | 0.984 | 0.984 | 1.000 | Case 5 | 0.870 | 0.839 | 0.855 | 0.988 | Case 6 | 0.833 | 0.800 | 0.816 | 0.971 | Case 7 | 0.872 | 0.872 | 0.872 | 0.975 |
| WCNN | Case 2 | 0.931 | 0.905 | 0.918 | 0.994 | Case 3 | 0.776 | 0.765 | 0.911 | 0.928 | Case 4 | 0.852 | 0.839 | 0.846 | 0.943 | Case 5 | 0.821 | 0.821 | 0.821 | 0.886 | Case 6 | 0.720 | 0.720 | 0.720 | 0.869 | Case 7 | 0.723 | 0.723 | 0.723 | 0.922 |
| NCNN | Case 2 | 0.857 | 0.811 | 0.833 | 0.972 | Case 3 | 0.828 | 0.779 | 0.803 | 0.939 | Case 4 | 0.788 | 0.661 | 0.719 | 0.913 | Case 5 | 0.846 | 0.786 | 0.815 | 0.932 | Case 6 | 0.767 | 0.660 | 0.710 | 0.858 | Case 7 | 0.756 | 0.660 | 0.705 | 0.907 |
| FNN | Case 2 | 0.662 | 0.608 | 0.634 | 0.744 | Case 3 | 0.567 | 0.559 | 0.563 | 0.702 | Case 4 | 0.672 | 0.661 | 0.667 | 0.771 | Case 5 | 0.589 | 0.589 | 0.589 | 0.710 | Case 6 | 0.587 | 0.540 | 0.563 | 0.725 | Case 7 | 0.674 | 0.660 | 0.667 | 0.753 |
|
|