Research Article
A New Generative Neural Network for Bearing Fault Diagnosis with Imbalanced Data
Table 7
Performance of different deep learning methods in sixteen-classes diagnosis.
| Sixteen | Precision | Recall | F1-score | AUC |
| GCNN | Case 2 | 0.746 | 0.690 | 0.717 | 0.993 | Case 3 | 0.761 | 0.723 | 0.742 | 0.985 | Case 4 | 0.765 | 0.709 | 0.736 | 0.973 | Case 5 | 0.801 | 0.745 | 0.772 | 0.969 | Case 6 | 0.705 | 0.576 | 0.634 | 0.935 | Case 7 | 0.672 | 0.516 | 0.584 | 0.933 |
| WCNN | Case 2 | 0.878 | 0.869 | 0.873 | 0.979 | Case 3 | 0.834 | 0.831 | 0.832 | 0.978 | Case 4 | 0.796 | 0.783 | 0.789 | 0.957 | Case 5 | 0.815 | 0.815 | 0.815 | 0.944 | Case 6 | 0.774 | 0.765 | 0.769 | 0.917 | Case 7 | 0.757 | 0.723 | 0.739 | 0.910 |
| NCNN | Case 2 | 0.757 | 0.676 | 0.714 | 0.975 | Case 3 | 0.797 | 0.708 | 0.749 | 0.978 | Case 4 | 0.679 | 0.570 | 0.619 | 0.953 | Case 5 | 0.645 | 0.545 | 0.591 | 0.921 | Case 6 | 0.684 | 0.535 | 0.601 | 0.892 | Case 7 | 0.655 | 0.477 | 0.552 | 0.875 |
| FNN | Case 2 | 0.449 | 0.303 | 0.362 | 0.810 | Case 3 | 0.489 | 0.335 | 0.397 | 0.833 | Case 4 | 0.375 | 0.248 | 0.298 | 0.756 | Case 5 | 0.370 | 0.250 | 0.299 | 0.776 | Case 6 | 0.381 | 0.381 | 0.381 | 0.761 | Case 7 | 0.500 | 0.310 | 0.382 | 0.792 |
|
|