Research Article
Intelligent Diagnosis of Rolling Bearing Fault Based on Improved Convolutional Neural Network and LightGBM
Table 2
Value of important parameters of LightGBM.
| | Names of the parameters | Parameter value |
| | n_estimators | 500 | | max_depth | 6 | | num_leaves | 34 | | learning_rate | 0.07 | | bagging_fractin | 0.68 | | bagging_freq | 5 | | feature_fraction | 0.6 | | lambda_l1,lambda_l2 | 3.4, 2.1 | | min_data_in_leaf | 33 | | min_split_gain | 0.96 | | min_sum_hessian_in_leaf | 0.003 |
|
|