Research Article
Evaluation and Prediction Method of Rolling Bearing Performance Degradation Based on Attention-LSTM
Table 5
Attention-LSTM prediction model parameters.
| | Parameter name | Parameter value |
| | Number of attention-layer nodes | 4 | | Number of input layer nodes | 4 | | Number of output layer nodes | 4 | | Proportion of training sequence | 67% | | Proportion of test sequence | 33% | | Number of middle layers | 4 | | Number of middle layer nodes | 6 | | Activation function | ELU | | Loss function | MSE | | Optimizer | Adam | | Dropout layers | 4 | | Learning rate | 0.001 |
|
|