Research Article
Vibration Images-Driven Fault Diagnosis Based on CNN and Transfer Learning of Rolling Bearing under Strong Noise
Table 1
CNN model parameters preset.
| | Items | Parameters |
| | Batch size | 24 | | Convolution1 kernel | Lengthwidthnumber = 556, stride = 1 | | Convolution2 kernel | Lengthwidthnumber = 5516, stride = 2 | | Convolution3 kernel | Lengthwidthnumber = 55120 | | Pool1 set | Type = max pooling, lengthwidth = 44, stride = 4 | | Pool2 set | Type = max pooling, lengthwidth = 66, stride = 6 | | Activate function | Relu | | Loss function | Cross entropy | | Optimizer | Stochastic gradient descent | | Initial learning rate | 0.001 | | Regularization | None |
|
|