Research Article
Remaining Useful Life Prediction of Rolling Bearings Based on Multiscale Convolutional Neural Network with Integrated Dilated Convolution Blocks
Table 3
Performance comparisons with different methods.
| Bearing | Proposed method | DNN | CNN | LSTM | MS-CNN in [15] | MAE (%) | RMSE (%) | MAE (%) | RMSE (%) | MAE (%) | RMSE (%) | MAE (%) | RMSE (%) | MAE (%) | RMSE (%) |
| 1-3 | 6.14 | 7.83 | 17.31 | 22.54 | 8.50 | 10.52 | 11.21 | 14.68 | 6.75 | 8.98 | 1-4 | 19.29 | 24.62 | 34.14 | 36.27 | 26.31 | 33.28 | 26.71 | 32.37 | 24.38 | 27.47 | 1-5 | 17.46 | 23.98 | 28.74 | 32.15 | 24.84 | 32.22 | 25.15 | 32.05 | 18.15 | 22.25 | 1-6 | 18.19 | 21.96 | 32.46 | 38.43 | 22.86 | 26.81 | 24.31 | 29.08 | 20.33 | 22.95 | 1-7 | 10.87 | 17.96 | 19.68 | 32.6 | 12.09 | 17.96 | 16.85 | 23.19 | 10.31 | 16.36 | 2-3 | 17.54 | 23.23 | 40.51 | 46.19 | 25.35 | 31.36 | 28.18 | 34.58 | 25.18 | 30.25 | 2-4 | 29.81 | 34.98 | 42.73 | 55.72 | 32.78 | 39.04 | 32.69 | 40.70 | 26.14 | 28.69 | 2-5 | 21.71 | 28.23 | 37.46 | 41.03 | 22.56 | 29.41 | 26.32 | 32.75 | 23.62 | 30.16 | 2-6 | 19.20 | 24.35 | 29.45 | 39.85 | 22.20 | 27.77 | 29.89 | 36.22 | 20.70 | 25.71 | 2-7 | 27.20 | 32.64 | 41.20 | 44.21 | 38.29 | 43.02 | 28.37 | 33.68 | 22.14 | 30.26 | 3-3 | 13.78 | 17.97 | 28.05 | 23.75 | 18.01 | 21.83 | 16.86 | 20.37 | 15.46 | 20.07 |
|
|