Research Article
Intelligent Recognition Method of Turning Tool Wear State Based on Information Fusion Technology and BP Neural Network
Table 2
Experimental parameters and collected data.
| Serial numbers | Experimental parameters | Collected data | Degrees of wear | Spindle speed (r/min) | Feed rate (mm/min) | Cutting depth (mm) | AE sensor (V) | Vibration sensor (V) |
| 1 | 1 | 560 | 20 | 0.4 | 0.7522 | 0.1542 | 2 | 1 | 800 | 30 | 0.6 | 1.4141 | 0.1732 | 3 | 1 | 1120 | 40 | 0.8 | 2.0434 | 0.2119 | 4 | 1 | 1600 | 50 | 1.0 | 3.1657 | 0.2183 | 5 | 2 | 560 | 30 | 0.8 | 1.1045 | 0.3117 | 6 | 2 | 800 | 20 | 1.0 | 1.9643 | 0.2944 | 7 | 2 | 1120 | 50 | 0.4 | 1.7929 | 0.2357 | 8 | 2 | 1600 | 40 | 0.6 | 3.9895 | 0.2698 | 9 | 3 | 560 | 40 | 1.0 | 2.3615 | 0.4471 | 10 | 3 | 800 | 50 | 0.8 | 3.3478 | 0.3960 | 11 | 3 | 1120 | 20 | 0.6 | 4.4762 | 0.1940 | 12 | 3 | 1600 | 30 | 0.4 | 4.9327 | 0.2112 | 13 | 4 | 560 | 50 | 0.6 | 2.0609 | 1.2597 | 14 | 4 | 800 | 40 | 0.4 | 2.2999 | 0.6498 | 15 | 4 | 1120 | 30 | 1.0 | 4.0951 | 0.3535 | 16 | 4 | 1600 | 20 | 0.8 | 4.4076 | 0.6331 |
|
|