Research Article
Intelligent Recognition Method of Turning Tool Wear State Based on Information Fusion Technology and BP Neural Network
Table 3
Analysis result of experiment data.
| Signal classification | Influence factors | Degrees of wear | Spindle speed | Feed rate | Cutting depth |
| AE signal | Mean 1 | 1.8439 | 1.5698 | 2.9001 | 2.4444 | Mean 2 | 2.2128 | 2.2565 | 2.8866 | 2.9852 | Mean 3 | 3.7796 | 3.1019 | 2.6736 | 2.7258 | Mean 4 | 3.2159 | 4.1239 | 2.5918 | 2.8967 | Range | 1.9357 | 2.5541 | 0.3083 | 0.5408 |
| Vibration signal | Mean 1 | 0.1894 | 0.5432 | 0.3189 | 0.3127 | Mean 2 | 0.2779 | 0.3784 | 0.2624 | 0.4742 | Mean 3 | 0.3121 | 0.2488 | 0.3947 | 0.3882 | Mean 4 | 0.7240 | 0.3331 | 0.5274 | 0.3283 | Range | 0.5346 | 0.2944 | 0.2650 | 0.1615 |
|
|