Research Article
Internal Leakage Diagnosis of a Hydraulic Cylinder Based on Optimization DBN Using the CEEMDAN Technique
Table 3
Optimization parameters of the DBN.
| | Parameters | Value |
| | Number of nodes in the input layer | 2000 | | Number of nodes in the output layer | 4 | | Number of RBMs | 3 | | Number of iterations for each RBM | 200 | | Number of nodes in the first hidden layer (obtained using the PSO-SA) | 860 | | Number of nodes in the second hidden layer (obtained using the PSO-SA) | 284 | | Number of nodes in the third hidden layer (obtained using the PSO-SA) | 78 | | Learning rate of the deep belief network (obtained using the PSO-SA) | 0.48 | | Momentum of the deep belief network (obtained using the PSO-SA) | 0.23 |
|
|