Research Article

Multidomain Feature Fusion Network for Fault Diagnosis of Rolling Machinery

Table 1

Parameters of MFFN.

ModuleNameSize/step/numberParameter sizeOutput size

1D-CNNInput_10(None,4096,1)
ResBlock_13/1/16912(None,4096,16)
ResBlock_23/1/161568(None,4096,16)
ResBlock_33/1/4441(None,4096,4)
Max_Pooling2/1/-0(None,2048,4)

2D-CNNInput_20(None,128,128,3)
Conv2D_130/5/256691200(None,20,20,256)
Conv2D_26/2/2562359552(None,8,8,256)
Inception_1(1,3,5,7)/1/32688768(None,8,8,128)
Reshape_10(None,2048,4)

SCEGlobal_Average_Pooling_10(None,4)
Global_Average_Pooling_20(None,4)
Global_Average_Pooling_30(None,4)
Concatenate_10(None,2048,12)
Concatenate_20(None,12)
Dense_16/-/-78(None,6)
Dense_212/-/-84(None,12)
Multiply0(None,2048,12)

ClassifierFlatten_10(None,24576)
Dense_3100/-/-2457700(None,100)
Dense_410,4,3/-/-1010,404,303(None,10),(None,4),(None,3)